
Leveraging Crowdsourced Technical Documentation:
Building a Command Thesaurus

Adam Fourney
afourney@cs.uwaterloo.ca

Michael Terry
mterry@cs.uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo

ABSTRACT
Since its inception, the Internet has enabled motivated mem-
bers of an application’s user base to compose and self-publish
technical documentation, manuals and tutorials. These dis-
tributed acts of self-publishing can be thought of as the im-
plicit crowdsourcing of technical support. In this paper, we
leverage user-generated documentation to construct what we
call a “command thesaurus”. A command thesaurus groups
together semantically related words, bridging the gap be-
tween the vocabulary expressed by users and the (sometimes
highly technical) terminology employed by software appli-
cations. In this work, we outline one potential approach
for the automatic generation of a command thesaurus, and
we present some initial experiments suggesting that the pro-
posed approach is feasible. We then conclude by describing
various compelling applications of these newly generated re-
sources. In particular, command thesauri may find use in
search-driven interfaces, and in tools that translate tutorials
from one application to another.

Author Keywords
Crowdsourcing, Technical Documentation, Command The-
saurus

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscellaneous

General Terms
Human Factors

INTRODUCTION
In a very real sense, application help and support has been
implicitly crowdsourced on the web since the web’s incep-
tion: People routinely make tutorials and how-to videos
available online, and they ask and answer questions on product-
specific forums. The need for this organic, community-
driven support is clear: Software producers cannot antici-
pate the wide range of problems users will attempt to solve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

with their software, or all of the different types of users who
may wish to use it. Thus, user-generated help, tutorials, and
support fill an important niche in the software ecosystem.

While user-generated help and support address crucial needs,
they are not without their problems. There is considerable
variability in vocabularies and terminology between users,
there is no centralized organizational structure to this user-
generated help, and user-generated help is not integrated
with the software itself (though recent research efforts are
moving in this direction [3]). User-generated help and sup-
port can thus be considered a crowdsourcing success, but a
success with very clear limitations.

The phenomenon of user-generated help and support is im-
portant because it provides a glimpse of the types of prob-
lems and opportunities that are likely to arise as other forms
of crowdsourcing and human computation become more
commonplace. In this paper, we focus on the specific prob-
lem of variable vocabularies between parties, and the over-
head this variability introduces in crowdsourcing or human
computation contexts. More specifically, we are interested
in reducing the time and effort it takes for users to express
their needs in ways that third parties can clearly understand.

To address the problem of bridging disparate vocabularies
in crowdsourcing and human computation contexts, we in-
troduce the notion of a Command Thesaurus, a graph that
connects alternate representations of the same concept with
one another. In our initial formulation of this concept, we
focus on the problem of matching users’ vocabularies with
that of a given application (making the software the “third
party”). For example, users of the Inkscape vector graphics
editor often want to “crop” their images. However, Inkscape
offers this functionality via the “clip” command. A Com-
mand Thesaurus would provide a bridge between the user’s
conceptualization of their goal, and the actual command set
provided by the application itself. Importantly, while we
ground this paper in this specific problem space (the user
communicating with the application), the concepts put forth
should be equally applicable to other crowdsourced and hu-
man computation tasks in which people are connecting with
other people.

In the rest of this paper, we develop this notion of a Com-
mand Thesaurus, provide examples of its application in in-

stitching images in gimp gimp invisible color gimp text along path color
gimp stitch photos gimp make area transparent gimp curving text
stitching panoramas in gimp gimp translucency curve text in gimp
.
how to make panoramic photos in gimp gimp how to use alpha channel how to bend text in gimp

Table 1. Three search query clusters related to the GIMP software application. Despite the wide range of terminology expressed in these queries, the
clustering algorithm is able to identify common themes.

terface design, and argue for its overall utility in other con-
texts.

THE COMMAND THESAURUS
In [4] we argued that users routinely rely on Internet search
engines to support their use of interactive systems, and we
demonstrated that an analysis of search query logs can re-
veal the primary tasks and needs of a product’s user pop-
ulation. In this work, we found that two of the most pro-
lific categories of user queries involve issues related to fea-
ture discoverability, and problems of mismatched vocabu-
lary (the interface using terminology that the user is not fa-
miliar with). Importantly, query logs provide an excellent
view of the vocabulary and terminology with which users
conceive their use of interactive systems. An example illus-
trates this point.

On May 23rd, 2010, we used the CUTS technique [4] to col-
lect samples from Google’s query logs, revealing 14,559 dis-
tinct queries relating to the GNU Image Manipulation Pro-
gram (GIMP). Analysis of those queries reveals the search
“gimp how to make black and white” is quite common.
GIMP (version 2.6) offers at least three alternative meth-
ods for converting a color image to black and white. These
methods are labeled as “grayscale”, “desaturate”, and “chan-
nel mixer”. Such technical terms may not be familiar to a
sizeable portion of GIMP’s user base, as evidenced by the
vocabulary used in search queries.

Importantly, users performing the search “gimp how to make
black and white” will find that Google returns webpages
which mention the term “grayscale” at a rate which is much
higher than can be attributed to chance alone. As such, we
may associate “make black and white” and “grayscale” to
one another, and record this relationship in GIMP’s com-
mand thesaurus. Newer version of GIMP could then lever-
age this thesaurus, perhaps augmenting the tooltip for the
grayscale command to include a list of related terminology
including “make black and white”. This would help users
to better identify the commands needed to perform their de-
sired tasks.

In the remainder of this section, we formalize this approach
to constructing command thesauri, we present results from
early experiments, and we discuss how a command the-
saurus might be leveraged from within an application.

Constructing a command thesaurus
To build a command thesaurus, we must link different vocab-
ularies describing the same concept. In our specific instan-
tiation of this problem, we are interested in associating the

vocabulary of search queries with the vocabulary expressed
by interface constructs. As noted earlier, the vocabulary ex-
pressed in searches can be extracted directly from search
query logs, while the vocabulary expressed by a GUI can be
extracted from the software localization dictionaries which
are used by software to support multiple languages. Building
a command thesaurus involves discovering how the terms of
each vocabulary are related.

Previous work by Baeza-Yates et al. describes how semantic
relations between search terms can be inferred by relating
search queries to one another through observations of which
pages users visit after performing searches [1]. The idea is
that, if a user elects to visit a search result after perform-
ing a query, they are implicitly indicating that the chosen
document is relevant to the original query. In fact, search
engines often use this feedback to actively refine their rele-
vance rankings of documents. The approach taken by Baeza-
Yates et al. is to express these query-document relations in
a weighted bipartite graph (queries occupy one partition,
while documents occupy the other). The structure of this
graph is then analyzed to infer various relationships between
search terms.

Building upon these ideas, we can relate query terms to soft-
ware commands as follows: We again create a weighted bi-
partite graph; but, in this graph, queries occupy one parti-
tion, and commands occupy the other. When a user submits
a query to the search engine and elects to visit a particular
search result, we associate the query terms with the com-
mands referenced in the visited webpage. As with the work
of Baeza-Yates, we may then analyze the structure of the re-
sulting graph to reveal clusters of tightly related terminology
and commands. These clusters can populate the “command
thesaurus”.

We have already begun performing experiments following
an approximation of the above process. We describe the
promising results of these early experiments in the next sec-
tion.

Early experiments and results
In order to explore the possibility of using the proposed ap-
proach for constructing a command thesaurus, we performed
a number of experiments using a simplified version of the
protocol. Specifically, for input we used the aforementioned
May 2010 GIMP query data set, which does not yield infor-
mation regarding which pages users visit after performing
searches. To compensate for this missing data, we simply as-
sume that each user eventually visits the top 3 search results
for each query. We note that the strategy is surprisingly ef-

fective, and has been used extensively in past research (e.g.,
[2, 6]). When we apply this technique to the GIMP data
set, we find many interesting clusters of related terminology.
Three example clusters are listed in Table 1.

The initial results are promising, and suggest that the pro-
cess of generating command thesauri can be heavily auto-
mated. Automation enables command thesauri to be updated
continuously as new user-generated documentation is made
available online, and as trends in application usage vary with
time. This enables a wide range of applications which we
describe in the next section.

Applications
Once a command thesaurus is available, it enables a wide
range of novel affordances and interactions which may im-
prove feature discoverability in software applications. The
example noted earlier in this document, where an applica-
tion’s tooltips are automatically augmented with related ter-
minology, is perhaps the simplest use of a command the-
saurus. We believe that such tooltips would allow users to
identify commands they might be interested in using, even
if they do not recognize those commands by name. We note
that the notion of augmenting tooltips with community gen-
erated data is not new (e.g., [5]); but, we believe our ap-
proach benefits from its use of timely data mined from thou-
sands of web pages and search queries.

Augmented tooltips are a passive means for helping users
identify the commands they might be interested in perform-
ing. Command thesauri also enable far more active assis-
tance. One particularly compelling vision of an active ap-
proach is the use of command thesauri in search-driven in-
terfaces. In a search-driven interface, users have the option
of typing in the description of the task they would like to per-
form, and the interface responds by presenting the user with
a list of relevant commands, options, or tool pallets. Such
search algorithms could be directly backed by the command
thesaurus, or at the very least, the command thesaurus could
be leveraged by the search algorithms to improve overall re-
sult rankings.

Finally, it may be possible to relate the command thesaurus
of one application to the command thesaurus of a similar
application in order to help translate commands from one
application to the other. For example, this could help users
of Photoshop complete tasks using GIMP, and vice versa.
A more intriguing possibility is that such associations could
enable translations of tutorials created for one application so
that they can be performed in the other. Importantly, creating
these associations between command thesauri might be as
simple as identifying commands in each thesaurus that give
rise to similar user queries.

GENERALIZING TO OTHER CROWDSOURCED AND
HUMAN COMPUTATION APPLICATIONS
While our initial experiments involve search queries and ap-
plication commands, it should be obvious that the technique
is likely to generalize to crowdsourced and human computa-
tion applications. In these cases, there is no real “command

set,” but, instead, a set of natural language tasks and com-
munications between a user and a worker. With suitable in-
strumentation and logging of these processes, one should be
able to achieve similar results when linking users’ conceptu-
alizations of tasks with those of the workers.

REFERENCES
1. Baeza-Yates, R., and Tiberi, A. Extracting semantic

relations from query logs. In Proc KDD ’07, ACM (New
York, NY, USA, 2007), 76–85.

2. Bernstein, M. S., Suh, B., Hong, L., Chen, J., Kairam,
S., and Chi, E. H. Eddi: interactive topic-based browsing
of social status streams. In Proceedings of the 23nd
annual ACM symposium on User interface software and
technology, UIST ’10, ACM (New York, NY, USA,
2010), 303–312.

3. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer,
S. R. Example-centric programming: integrating web
search into the development environment. In Proc CHI
’10, ACM (New York, NY, USA, 2010), 513–522.

4. Fourney, A., Mann, R., and Terry, M. Characterizing the
usability of interactive applications through query log
analysis. In Proc CHI ’11, ACM (New York, NY, USA,
2011).

5. Matejka, J., Li, W., Grossman, T., and Fitzmaurice, G.
Communitycommands: command recommendations for
software applications. In Proceedings of the 22nd annual
ACM symposium on User interface software and
technology, UIST ’09, ACM (New York, NY, USA,
2009), 193–202.

6. Shen, D., Pan, R., Sun, J.-T., Pan, J. J., Wu, K., Yin, J.,
and Yang, Q. Q2c@ust: our winning solution to query
classification in kddcup 2005. SIGKDD Explor. Newsl. 7
(December 2005), 100–110.

	Introduction
	The command thesaurus
	Constructing a command thesaurus
	Early experiments and results
	Applications

	Generalizing to other crowdsourced and human computation applications
	REFERENCES

